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Abstract 

A simplified probabilistic theory of triplet invariants 
making full use of the space-group symmetry is 
described. Practical aspects concerning the applica- 
tion of the theory to the solution of real crystal struc- 
tures are discussed: in particular, the number and the 
possible role of so-called symmetry-consistent and 
-inconsistent triplets in the structure-determination 
process are discussed together with a practical 
algorithm for their identification. 

Symbols and abbreviations 

E h =- I Ehl exp ig~h : normalized structure factor. 
N: number of atoms in the unit cell. 
r: centring order of the unit cell. 
Npr = N~ r: number of atoms in the primitive unit cell. 
t: number of atoms in the asymmetric unit. 
Zj: atomic number of the j th atom. 

N 
?1 (r.=E Zj. 

j = l  

N 

2 (h)= ]~ f~(h). 
j = l  

N~q-= (0"3~3/2)-2: equals N when all the atoms in 
the unit cell are of the same atomic species. 
m: order of the space group. 
Cs---(R,,T~): sth symmetry operator. 
C.~rj = R~rj + T.~. 
As, r : 2 zr(kT.~ + IT,). 
Ph: Wilson's power (or statistical weight) of a struc- 
ture factor. It equals the number of times for which 
h ( I -  R,) =0  for n = 1, 2 , . . . ,  m. If the cell is centred, 
Ph = ~'eh, where eh is calculated by involving in the 
equations h ( I - R , ) =  0 only the symmetry operators 
not related by a centring vector. 
I~: modified Bessel function of order i. 
D,(x) : I ,(x)/  lo(X). 

Triplets 
a51 

1. Introduction 

= q~h+ qh,+ qh ( h + k + l = 0 )  ( l a )  

0108-7673/91/040346-07503.00 

and 

q52=~0h+q~,a +q~R, ( h + k R ~ + l R r = 0 )  ( lb)  

are symmetry equivalent. Since 

¢'2 = O ~ - A  ..... ( le)  

it may be said that O~ and ¢'2 are symmetry consistent 
if (kT~ + ITr) is an integer value, otherwise they are 
said to be symmetry inconsistent. 

The existence of inconsistent triplets in P2,2~2~ 
was pointed out by Hauptman & Karle (1956). A 
probabilistic approach for the estimation of triplet 
invariants which takes into account the space-group 
symmetry was described by Giacovazzo (1974a, b): 
accordingly, the triplet reliability parameter G =  
2[EhEkE,[/N~/q 2 derived by Cochran (1955) for P1 
structures should be replaced by 

o '  - u, 2 (2) 

where ~: is the trigonometric part of the structure 
factor. The above results were confirmed and exten- 
ded by Pontenagel & Krabbendam (1983); they found 
that in the eleven pairs of enantiomorphously related 
space groups there are triple products for which (2) 
may be a complex value. 

A general algebraic point of view for the study of 
the coexistence of symmetry-related invariants (and 
seminvariants) was provided by the method of rep- 
resentations (Giacovazzo, 1976). According to this 
method, the first representation of a triplet is the set 
of triplets 

{q~h + ~OkR, + ~R,} 

which are obtained from ( la )  when R~ and Rr vary 
over the set of rotation matrices of the space group. 
In a recent paper by H a n &  Langs (1988) the 230 
space groups were examined in order to identify 
conditions which permit symmetry-inconsistent trip- 
lets. A useful table describing such conditions for the 
various space groups was presented. The matter was 
reexamined (Giacovazzo, 1989) in order to: 

O 1991 International Union of Crystallography 



M. C. BURLA AND C. GIACOVAZZO 347 

(a) complete the results by H a n &  Langs, who 
missed conditions for cubic space groups and neglec- 
ted triplets with symmetry-restricted phase values; 

(b) provide an algorithm for the discovery of sym- 
metry-inconsistent triplets in any space group, in 
order to avoid the use of the large Han & Langs table. 

All the above-mentioned papers paid attention to 
the theoretical aspects of the problem. So far no paper 
has been devoted to the practical aspects: i.e. how 
large the number of symmetry-consistent and -incon- 
sistent triplets may be for crystal structures of miner- 
alogical or of chemical interest; what advantages, for 
the success of a direct procedure for phase solution, 
really arise from triplet estimates making full use of 
space-group symmetry. In particular, it could be inter- 
esting to learn about the possible disturbance that 
symmetry-inconsistent triplets, when not recognized, 
may introduce against the success of a direct pro- 
cedure. To give a reasonable answer to these problems 
is one of the purposes of this paper. Also we want to 
describe an algorithm for the identification of sym- 
metry-equivalent triplets and a practical formula for 
their estimation. 

2. A procedure for the estimation of triplet invariants 

Triplet invariants may be estimated according to 
recent methods (Castleden, 1987; Peschar & Schenk, 
1987) which utilize the space-group symmetry in 
deriving the joint probability distributions of struc- 
ture factors. Such methods lead to reliability param- 
eters which coincide with those derived by 
Giacovazzo (1974a, b) and Pontenagel & Krabben- 
dam (1983). Thus the first problem to be faced in a 
practical procedure for triplet estimation is that of 
identifying how many triplets ( lb)  can be calculated 
for each triplet (1 a). Triplets of type 

~hR,, -It- ('~kR,, -~- q)lRn n = 1 , . . . ,  m 

are trivial: they never present phase shift with respect 
to the triplet 051 defined by ( l a )  and can always be 
neglected. A simple way for obtaining equivalent 
triplets is to modify the usual 22 procedures (see 
Main, 1985, for a related process) in order to identify, 
when they exist, all the triplets constituted by the 
same three reflections. According to the signs, four 
types of triplets, all with the same reliability parameter 
G, can coexist in a Y~2 list: 

n l  n2 n3 /11 ( 3 a )  

n I - - l l  2 n 3 /12 (3b) 

n!  n 2 - - n  3 /13 (3c) 

n I - - n  2 - - n  3 A 4 (3d) 

where n, is the code number of the standard reflection 
(in decreasing order of IEI), a~ is the generic triplet 
phase shift. If n~, n2, n3 are all reflections of general 

type, each type of triplet in (3) is not symmetry 
equivalent to the others. In this case they can be 
simultaneously used, without any supplementary 
probabilistic consideration, in direct procedures for 
phase determination as independent phase relation- 
ships. A brief supplementary analysis of pairs of such 
triplets is presented in § 3. 

Two triplets of the same type [i.e. with identical 
signs in (3)] are symmetry equivalent by definition; 
but also triplets of different type may be symmetry 
equivalent. For example, if the reflection n2 in (3b) 
or n 3 in (3c) or n2 and n 3 in (3d) have symmetry- 
restricted phase values then (3b), (3c), (3d) are all 
symmetry equivalent to (3a). For example, for (3b) 
we can write 

q:'koR, = - -  q:'k. = q:'k. - 2 " r r k . T i  ( 4 )  

where the subscript a to k denotes the standard reflec- 
tion and R~ is the matrix for which kR, = - k .  Then 
(3b) may be transformed into 

n I tl 2 ll 3 A ~  

where/1" = A2-2rrkaTi  = A2--2~0pko, and ~'pko is one 
of the two symmetry-permitted phases of the reflec- 
tion ka. 

It may be noted that (3a) and (3d) are also sym- 
metry equivalent [as well as (3b) and (3c)] if nl has 
restricted phase values. Indeed, (3d) may be the first 
transformed into 

- n  I n 2 n3 - - A  4 

and then, by applying (4) to reflection h, it is again 
transformed into 

n ,  n 2 n 3 ( - -  An --  2OPt, h,,). 

If all of nl, n2, n3 have symmetry-restricted phases 
then all the triplets (3) are symmetry equivalent. The 
above considerations suggest that all symmetry- 
equivalent triplets can be easily referred to a unique 
representative triplet, say q5 = ~h+ q~k+ q~,. If full use 
of space-group symmetry is made then (A.5) and 
(A.6) may be applied to such a triplet so that it may 
be stored in a ~2 list as 

n l  ?12 n3 /1 / -+  A G '  

where (see Appendix) 

tan ,41= (~" sin/1, . ,) /(~" cos/1,.c) = T~ B (5) 

is the expected value of q~ and 

O ' -  2]EhEkE,] 1 
N ]1/2 I/2 ( T 2 +  B 2 )  I '2 (6) 

( - " e q / p r  (ehekEI) 

Three cases can occur. 
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(I) All symmetry-equivalent  triplets have the same 
A,., value. Then AS = A and 

G ' -  2[EhEkEml q 
( / ~ r ) 1 / 2  (eheken)l/2--Gw, - - eq /p r  

which is a non-vanishing real value. The phase of  the 
representat ive triplet is then expected to be zero: the 
reliability parameter  G '  differs from Cochran ' s  G 
parameter  by a factor w arising from space-group 
symmetry  (see Table 1 in Giacovazzo,  1974b). 

(II) Symmetry-equivalent  triplets have different 
values of A~,, but they lead to T = 0 and B = 0. Then 
G'  is equal to zero and the triplet is symmetry  incon- 
sistent. Triplets symmetry  restricted to +7r /2  in 
P2~2~2~ are a typical example.  Let us examine 

I~ 1 ~. ~Ohl,k 1,0"~- ~-h1,0, / i  + ~0 - k l , - / 1  

with odd values of  (h~+k~+ll). The symmetry-  
equivalent  triplet 

dp 2 = ~hl.kn ,0 "~- ~O_h1,0,-/I 4- ~O0,_kl,+/~ 

= q~l + rr(hl + kl + 1~) 

can be found,  giving opposi te  phase indication. Such 
a triplet, once identified, can be excluded from any 
active use in the phasing process. 

(III) Symmetry-equivalent  triplets have different 
za,., values, but T # 0 a n d / o r  B # 0. Then the phase 
of the representative triplet is expected to differ from 
2~  according to the non-vanishing reliability param- 
eter given by (6). This is the case explicitly identified 
by Pontenagel  & Krabbendam:  such triplets can help 
to fix the enan t iomorph  in the phasing process. 

In order  to illustrate this case, let us consider,  in 
space group P3~, 

[(x,y, z); (.9, x - y ,  z+~) ;  ( $ + y ,  2, z+2) ] ,  

the triplet invariant  

~ 1  = ~303 "3t- ~331 -3¢- ~0.32" 

A symmetry-equivalent  triplet 

q152 = q~30~ + q9031 + q9~32 = q~30~ + q~(]3~ )a~ + ~0(0~2)~2 

= q~l - A3.2 = q~l - 2rr /3  

may be calculated. Then according to (5) and (6) we 
obtain A s = rr/3 and G ' =  G. The example given by 
Pontenagel  & Krabbendam in their Appendix  V for 
space group P41, 

I [(x, y, z), (~, '9, z +½), (.9, x, z +~), (y, ~, z - , i ) ] ,  

may be treated in the same way. Indeed,  the pair of  
triplets 

~ 1  = ~221 "l- ~0a01 "+- ~P2~.~ 

and 

~)2 = ~221 + ~0o,il q- ~0~2~ ----- ~P221 + ~O(aOl)R4 "~ ~0(222)R2 

= q~l - za4.2 = q), + rr /2 

may be represented by q~l, for which the expected 
value A S = - - r r / 4  and the reliability parameter  G ' =  
G x 2 I/2 may be calculated. The applicat ion of  (5) 
and (6) to triplets const i tuted by restricted phase 
reflections is trivial in the cases I and II. In order  to 
illustrate case III, we consider,  in space group P4~212~ 
[equivalent  positions 

(x ,y ,z)"  (~,'9, z+½); (x+½,'9+ ~, ~+3);  

(~ + ½, y + ½, ~ + ¼); ('9, ~, :? + ½); (y, x, ~); 
I I (y +½, ~ +~, z +~); (y+ ~, x+~, z +I)], 

the triplet 

If space-group symmetry  is not taken into account,  
@1 is expected to be close to 2zr. However,  the values 
of  qh,i,i~, qh,,,12 and q~o7 are symmetry restricted to 
(0, rr), (0, rr), ( - 7 r / 4 ,  3r r /4)  respectively, so that the 
triplet q~ is itself restricted to ( - r r / 4 ,  3rr /4) .  If full 
use of  symmetry  is made,  a triplet symmetry  
equivalent  to q~l may be calculated" 

q52 = qh,i,i~ + q~i,i,12 + q9o27 

= ~/~1,i,~'7 t- ~0(I,!,12)R2 -~- ~0(207)1R8 

= ~n -- A2,8 = q~l + rr/2. 

According to (5) and (6), a phase shift A s = - r r / 4  
and a reliability parameter  G'= G x21/2 (e~ = 1 for 
i = 1, 2, 3) are associated with the representative trip- 
let. Now the expected value of  the triplet is consistent 
with phase restrictions imposed by symmetry.  

Some supplementary  considerat ions on the prac- 
tical consequences of  the above result are useful. 
Suppose that  in a phasing process q~1,1,12 and ¢2o7 
have already been fixed to 0 and - r r / 4  respectively. 
If no use is made of the present theory,  qh,i,~ will 
be assigned the value +zr /4 .  Since this is inconsistent  
with the permit ted value of  qh,i,r9 the tangent  routine 
will associate with ~ol,i,i~, its permit ted value closest 
to rr/4,  i.e. 27r, with reliability parameter  equal to 
G/21/2. If the present theory is used, ~o,,i,i~ will 
assume the value 

~01,i,ib = --~01,1,12 --  qg~o 7 --  r r /4  = 0 

with reliability parameter  equal to G/2 ~/2 

3. Special pairs of triplets 

In a paper  by Giacovazzo & Vickovi6 (1980) (but see 
also Haup tman  & Green,  1978) special quartets  of  
type 

q.t = ~0h. k- q~he q- qgk- F qgke = 2(~Ph + q~k) - 2rr(h + k)T 

were studied in order  to estimate in non-centro-  
symmetr ic  groups the so-called two-phase variants,  
fixed by the relat ionship 2(q~h + q~k) = 1/' + 2 zr(h + k)T. 
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Table 1. B O B B Y ;  special pairs o f  triplets 

F o r  s i m p l i c i t y  M i l l e r  i n d i c e s  a r e  n o t  g i v e n  a n d  r e f l e c t i o n s  a r e  i d e n t i f i e d  by  t h e  c o d e  n u m b e r .  

G A 

7 20 51 1-90 
70 - 2 0  -51  !-90 0 

(~7)true = 252° 

14 - 3 5  - 3 8  1'51 
14 35 38 1'51 

(~t4)t~,~ = 1730 

19 38 40 1'32 0 
19 - 3 8  - 4 0  1-32 

(~t9)true = 2 4 4 °  

32 48 - 5 5  0.99 
32 48 55 0-99 

(~ss)t~u~ = 35° 

50 - 6 2  64 0.73 0 
50 62 - 6 4  0-73 0 

(~so),~o~ = 18° 

G d G J 

7 -21  - 6 4  1"73 0 7 51 64 1'35 0 
7 21 64 1.73 ~ 7 -51  - 6 4  1"35 

(w7)¢~ = 90,270 ° a = ~ G,D~(G,)= 3.179 

(¢14)e~, = 0,180 ° a = ~ GiDt(G , ) = 0-912 

19 - 3 8  - 5 0  i-23 0 
19 38 50 1-23 

(¢lg)c~t = 90,270 ° a = ~ G ,  Dt(G,)= 1.386 

( ~¢ss)c~t = 0, 180 ° 

(ff'5o)~, = 0, 180 ° 

a = "s- G,D~( G, ) = 0-446 

a = x~ G, DI ( G, ) = 0.252 

If ~ is estimated close to 7r and (h + k)T is an integer 
value, then ( ~ , +  ~k) is close to +7r/2. So phase esti- 
mates are obtained which are enantiomorph sensitive. 

While three-phase and upper-order variants can be 
defined via special sextets, octets and so on, there is 
no way of defining one-phase variants by the same 
technique. However, in favourable space groups 
special triplets exist which provide estimates for one- 
phase variants. Let us suppose, for example, that a 
pair of triplets, constituted by non-centrosymmetrical 
phases, can be found such as 

(1) I = ~ha'at- ~ a R t  -F ~laRv -~-- ~a-JC (Pka-F ~laOV ,/It 

where 

A t = -27r(kaT,~ + laT~) 

and 
A2 = -2r r ( -k , ,Tp  + l,,Tq ) 

(7) 

(8) 

respectively. Since Ot and 02 are not symmetry 
equivalent and both are expected to be close to 2rr, 

2¢t,o = O l -  O 2 -  A t + a 2 =  a 2 -  At 

from which 
1 ~th, = f, ( A 2 -- A l ) + n Tr. (9) 

The reliability parameter for the phase relationship 
(9) is the/3 value which satisfies 

D,(/3) = D , ( G I ) D , ( G 2 )  

where G1 and G2 a r e  the reliability parameters for 
the triplets Oi and 02 respectively. 

The same reflection Ek may be involved in more 
pairs of triplets of type (7), (8). The phase indications 
(9) may then be combined by a tangent-like formula 
in order to obtain more reliable estimates for ~ok. 

The application of such considerations to the crys- 
tal structure BOBBY (see Tables 2 and 3 for relevant 
data and references) yields the results collected in 

Table 2. Crystal lographic  da ta  f o r  the eleven s tructures 
selected f o r  s tudy  

S p a c e  
S t r u c t u r e *  C h e m i c a l  f o r m u l a  g r o u p  Z 

TPALA C2sHa2N407 P2~ 2 
E R G O  C28H440 P2,2,21 8 
A Z E T  C21HI6CINO Pca2~ 8 
APAPA C3oHsTN~sOt6P2.6H20 P4~2t2 8 
M G H  EX C4~ H68 N i.,MgO~ 2-2(7104.4(7H3C N P3 t 3 
NO55 C2oH24N 4 Fdd2 16 
G O L D M A N 2  C2~Hj~ Cc 8 
T U R I 0  C1sH240 2 P6322 12 
I ) IOLE CmHt802  IFl2d 16 
D I A M  CI4H2oO P42/ n 8 
BOBBY N a ' . ( ' a 2 * . N I C H 2 C O ) ~  17213 4 

* Comple te  references for test structures are not given for the sake of  
brevity. The reader  is referred to magnet ic  tape distributed by the crystallo- 
graphic  group in G6tt ingen.  

Table 1. The agreement of results with the theory is 
satisfactory. 

4. Experimental 

Eleven crystal structures having different structural 
complexity and covering a large variety of space 
groups have been used as experimental tests. For each 
structure the code name, the space group and the 
chemical formula are quoted in Table 2. Tests were 
performed by means of a modified version of S I R 8 8  
(Burla, Camalli, Cascarano, Giacovazzo, Polidori, 
Spagna &'Viterbo, 1989) in order to provide data 
concerning occurrences of special and of general 
triplets respectively and to check advantages and /o r  
drawbacks arising from the use of probabilistic for- 
mula which estimate triplet phase by making full use 
of the space-group symmetry. 

In Table 3 NRIF is the number of the largest [El's 
chosen by S I R 8 8  for active use in the phasing pro- 
cedure; in Table 4 NRIF is the number of the smallest 
IEl's chosen by S I R 8 8  for psi-zero triplets and nega- 
tive quartets. The number of triplets found in each 
of two Y~2 lists is divided into general triplets (each 
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Table 3. Data for active triplets 

A c t i v e  t r ip le ts  

S t ruc tu re  N R I F  G e n e r a l  Spec ia l  

I II 

TPALA 306 3564 45 
ERGO 382 3889 149 2 

(46) (2) 
AZET 342 3244 815 

(16) 
APAPA 426 4319 135 9 

(25) (8) 
MGHEX 489 4104 2 - 

(-) 
NO55 246 3820 194 - 

(29) 
G O L D M A N  374 3200 801 - 

(-) 

TUR10 219 3715 361 27 
(125) (20) 

DIOLE 182 3603 408 4 
(19) (4) 

DIAM 260 5083 3 I0 
(3) (1o) 

BOBBY 68 2171 62 - 
(1) 

Pairs  

1II 

_ 

- 

_ 

14 
(13) 

10 2 
(-) 

- 

Table 4. Data for psi-zero triplets 

Psi -zero  t r ip le ts  

S t r u c t u r e  N RI F G e n e r a l  Spec ia l  Pairs 

I II I I I  

TPALA 100 2566 8 - - 
ERGO 100 3866 134 2 - 

(47) (2) 
AZET 100 3465 535 - - 

(29) 
APAPA 100 3786 193 I 1 21 

(48) (9) (13) 
MGHEX 100 3985 5 10 

(-) (-) 

NO55 100 3865 135 - 
(25) 

GOLDMAN 100 2870 633 - 
(-) 

TURI0  100 3724 276 59 - 
(138) (52) 

DIOLE 35 3618 369 4 - 5 
(29) (4) 

DIAM 100 3974 26 6 - - 
(26) (6) 

BOBBY 38 1110 104 10 - - 
(1) (5) 

of them has no symmetry equivalents) and special 
triplets (for each of them two or more symmetry 
equivalents exist). Special triplets are then classified 
according to the types I, II or III described in § 2: 
for each structure the numbers of special triplets 
having symmetry-restricted phase values are quoted 
in parentheses on a second line. The number of special 
pairs of triplets described in § 3 are also given. 

Tables 3 and 4 show that: 
(a) the number of special triplets increases with 

space-group symmetry. Mirror and glide planes are 
more effective than proper symmetry axes in generat- 
ing special triplets, as expected; 

Table 5. Combined figures of merit ( CFOM) and R 
values 

P r o t o c o l  1 P r o t o c o l  2 

S t r u c t u r e  C F O M  R C F O M  R 

TPALA 0.221 0/24 0-186 0/24 
ERGO 0.530 0/72 0.469 0/72 
AZET 0.372 0/30 0.335 0/30 
APAPA 0.957 6/60 0.967 4/72 
MG H EX 0.866 0/96 0.868 0/96 
NO55 0.260 0/32 0.784 1/36 
G O L D M A N  0.239 0/24 0-221 0/24 
TURI0  0.882 6/36 0-819 6/36 
DIOLE 0.813 4/30 0.776 4/36 
D1AM 0-987 7/32 0.981 7/32 
BOBBY 0.168 35/160 0-161 38/192 

(b) special triplets of type I are more frequent than 
those of types II or III. The full use of symmetry can 
change only their reliability parameter ( G ~ G ' )  but 
not the expected phase values. Thus they should often 
have little effect in the phasing process; 

(c) special pairs of triplets (as defined in § 3) are 
infrequent and are expected to be of very limited use. 

In order to check the effectiveness of the formulas 
(5) and (6) with respect to Cochran estimates, SIR88 
was run according to two different protocols: in the 
first one five symbolic phases (magic-integer pro- 
cedure) and Cochran estimates were used; in the 
second one five symbolic phases and formulas (5) 
and (6) were applied. The results are shown in Table 
5: in columns 2 and 3 the highest values of the 
combined figure of merit (CFOM) and the number 
of correct solutions over the number of trials (R) are 
shown according to protocol 1; in columns 4 and 5 
the same results are given for protocol 2. 

The following conclusions arise: 
(i) the effectiveness of the two protocols in solving 

crystal structures is rather similar: the main advantage 
for protocol 2 is that it solves NO55. 

(ii) CFOM's are not very different. In particular 
PSI0 and NQUEST proved rather insensitive to the 
use of symmetry. 

5. Concluding remarks 

A simplified probabilistic theory for triplet phase 
estimation making full use of the space-group sym- 
metry has been described. The connections of such 
a theory with the representations method of structure 
invariants and seminvariants have also been revealed. 
Practical applications show that in most cases the 
standard Cochran formula for triplet invariants and 
the use of the tangent formula are sufficient tools for 
the solution of the phase problem. For high-symmetry 
space groups the application of the theory here 
described can sometimes provide supplementary 
information sufficient for the solution of a crystal 
structure which could not be solved by standard tech- 
niques. In order to reduce computing time the appli- 
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cation of the theory to PSI0 triplets and to negative 
quartets for calculating FOM's may be skipped 
without compromising the success of the phasing 
process. 

A P P E N D I X  

Let 

m 

E h  = t.'j(h) Y. exp27rhC,rj 
. j~ l  s = l  

be the normalized structure factor with vectorial index 
h, where 

[ 1 ~,j(h) =fj(h)/  ~-~ 2 (h) 

Instead of calculating the complete trivariate distribu- 
tion P(Eh, Ek, E~) with h + k + l = 0 ,  as done by 
Giacovazzo (1974a), we limit ourselves to calculating 
the expression for the reliability parameter for a triplet 
phase in any space group. This will make reading 
easier for crystallographers not familiar with distribu- 
tions theory and will elucidate the role played by 
symmetry in the estimation of triplets. 

It is easily seen that the parameter G obtained by 
Cochran in P1 coincides with 21EhEkE, I(EhEkE~). 
Indeed, in P1 

N 

E~ = Y. ~';(h) exp 27rihrj 
j = l  

and 

N 

(EhEkE,): Y. ~9(h)~j(k)vj(l) 
j - I  

x (exp 27ri[k(rj, - rj~) q- l(r): - rj3)] ) 

N 

= E ~j(h)~j(k)~j(l) 
j - I  

N fj(h)fj (k)fj(l) 
: [EN (h)Y~N (k) EN (!1] '/2 

1 
- M 1 / 2 .  (A.1)  

" ' e q  

Calculate now (EhEhEh) for any space group: 

(EhEkE,)= ~ u;(h)uj(k)~,j(l) 
j = l  

x ( ~ exp 2"rr i [k(C.~  l - C ~ )  

+ I(C,~- C~,)]rj). (A.21 

With the choice C.~, = C.~C~ 3, C.~2= CrC,~ (and there- 
fore N.~, = N,N.~, T~ =N~T,~+T~) (A.2) is equivalent 

to 

(EhEkEI)= ~ v)(h)pj(k)uj(I) 
j = l  

x ~. (exp 2-rri{[k(R.~-l) 
~;, r, 5;3 = 1 

+ I(R, - I)]R;~rp + k(R~T~ + T, - T ~ )  

+ I(R,T~ + Tr -T~)}) (A.3) 

For general h, k, I reflections and for primitive cells 
non-vanishing contributions to the average on the 
right-hand side of (A.3) (mostly but not always) arise 
when R, = I or Rr = I and R,~ is whichever (m cases). 
Since tm=N, (A.3) transforms into (A.1) and 
Cochran's reliability parameter G is obtained. 

If h, k, ! are general reflections but the cell is centred 
then additional non-vanishing contributions arise 
when R~ and Rr are related to I by a centring vector: 
in all there will be 7"2m contributions to the average 
and (A.3) transforms into 

(EhEkE.)= [ ~ ui(h)u~(k)ui(l)] m~ -2 
j= I 

N 
= 2 y~ ,,j(h),,~(k)~,j(l) 

i = 1  

N 

y £(h)f~(k)£(I) 
2 .j= 1 

= T ~/~[EN (h) Y~ (k) Y~ (!)] '/2 

(N~),/2 pr 

where ( N e q ) p  r refers to the primitive unit cell. This 
result, in accordance with Giacovazzo (1974b), sug- 
gests that the value of Neq to be used in any Y2 list 
has to be calculated on the basis of the primitive cell. 

If h, k, 1 are special reflections with eh or ek or e~ 
different from unity (but not only in this case as shown 
in the text), more non-vanishing contributions to the 
average arise in the right-hand term of (A.3). In this 
more general case 

1 1 
( Eh Ek Ei) -- - -  

( N e q  ~l/21pr (EhCrkEI )  I / 2  

x ~" exp 2 ~i{k(R~T~ + T~ - T ~ )  

+ I(R,T,.~ + T , -  T~)} (A.4) 

where the double prime to the summation means that 
symmetry operators vary among the rn/r symmetry 
operators not related by a centring vector, with the 
supplementary condition that 

k(R~-T)+I(Rr-|)  = 0. 
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In this case k R ~ + l R r = k + !  so that (A.4) may be 
simplified to 

1 
(EhEkE' ) - (Neq) l /Zpr  ( e h e k e , ) l / 2 E " e x p [ i A s ' r ] "  ( a . 5 )  

According to (5) the expected value of qb= 
~oh+ ~0k+ ~01 is then defined by 

tan Ay = (Y" sin As.r)/(Y" COS A ) =  T~ B 

where As,, = +27r(kTs+lTr) .  Accordingly, the relia- 
bility parameter of the phase estimate is given by 

G ' - 2 ] Eh Ek EI 1 
]~r ~ 1 / 2  I/2(TZ+B2) ~/2 (A.6) 

(- .oq,pr (ehEke,) 

Finally, the conditional probability distribution of q~ 
given IEhl, led,  IE, I in any space group and for any 
triple (h, k, !) is given by 

P( ~llEhEkE, I) 

=[27rlo(G')]exp[G' cos ( ~ -  A/)]. (A.7) 

Even if explicitly obtained for non-centric phase trip- 
lets, these results are easily extended to any kind of 

triplet with three-phase restricted structure factors. 
Indeed, the expected value of q~ will always be 
defined by tan A f :  a hyperbolic tangent expression 
can then define which of the two allowed phase values 
is more probable (see § 2). 
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Abstract 

An analysis is presented of the angular distribution 
of reflections in Laue diffraction, with particular 
application to the spatial overlap problem in syn- 

t Present address: Department of Biochemistry and Molecular 
Biology, University of Chicago, 920 E 58th Street, Chicago, 
IL 60637, USA. 

chrotron macromolecular crystallography. Spatial 
overlaps of spots on the detector occur when the 
angular separations of adjacent diffracted beams are 
very small. The maximum density of spots occurs at 
0c = sin -~ (AminD*/2) and the majority of spots in this 
region of 0 have short wavelengths. At higher 0 the 
mean wavelength increases steadily. On a flat detector 
the spots of a Laue pattern lie on intersecting conics. 
Each conic corresponds to a zone plane of reciprocal- 
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